
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, AUGUST 2024 1

CLFT: Camera-LiDAR Fusion Transformer for
Semantic Segmentation in Autonomous Driving

Junyi Gu , Mauro Bellone , Tomáš Pivoňka , and Raivo Sell

Abstract—Critical research about camera-and-LiDAR-based
semantic object segmentation for autonomous driving signifi-
cantly benefited from the recent development of deep learning.
Specifically, the vision transformer is the novel ground-breaker
that successfully brought the multi-head-attention mechanism to
computer vision applications. Therefore, we propose a vision-
transformer-based network to carry out camera-LiDAR fusion
for semantic segmentation applied to autonomous driving. Our
proposal uses the novel progressive-assemble strategy of vision
transformers on a double-direction network and then integrates
the results in a cross-fusion strategy over the transformer decoder
layers. Unlike other works in the literature, our camera-LiDAR
fusion transformers have been evaluated in challenging conditions
like rain and low illumination, showing robust performance.
The paper reports the segmentation results over the vehicle
and human classes in different modalities: camera-only, LiDAR-
only, and camera-LiDAR fusion. We perform coherent controlled
benchmark experiments of the camera-LiDAR fusion trans-
former (CLFT) against other networks that are also designed for
semantic segmentation. The experiments aim to evaluate the per-
formance of CLFT independently from two perspectives: multi-
modal sensor fusion and backbone architectures. The quantitative
assessments show our CLFT networks yield an improvement of
up to 10% for challenging dark-wet conditions when comparing
with Fully-Convolutional-Neural-Network-based (FCN) camera-
LiDAR fusion neural network. Contrasting to the network with
transformer backbone but using single modality input, the all-
around improvement is 5-10%.

Our full code is available online for an interactive demonstra-
tion and application1.

Index Terms—Camera-LiDAR fusion, Transformer, Semantic
Segmentation, Autonomous driving.

I. INTRODUCTION

Semantic segmentation of the surrounding environment
is a challenging topic in autonomous driving and plays a
critical role in various intelligent-vehicle-related research-
tasks such as maneuvering, path planning [1] [2], and scene
understanding [3]. The field of semantic segmentation has
greatly advanced due to the evolution of deep neural net-
works, particularly Convolutional Neural Networks (CNN),
along with the availability of open datasets. Early studies
[4] took camera RGB images as input and tested them with
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datasets that had relatively monotonous scenarios [5]. In recent
years, the blooming of perceptive sensor industries and strict
safety requirements motivated semantic segmentation research
related to different sensors and comprehensive scenarios. Li-
DAR sensors are involved the most in all kinds of research.
Examples of the popular LiDAR-only methods include VoxNet
[6], PointNet [7], and RotationNet [8]. However, multimodal
sensor fusion is perceived as a promising technique to solve
the problem of autonomous driving and has become the
mainstream option for semantic segmentation [9].

As an applied research, the advancement of semantic
segmentation is driven by the proposals of neural network
backbones. One of the most popular neural networks re-
cently proposed is the transformer [10], which implemented
the multi-head attention mechanism [11] into the Natural
Language Processing (NLP) application. The proposal of the
Vision Transformer (ViT) [12] inspired researchers to explore
its potential in environment perception for autonomous driv-
ing. In this work, we introduce the camera-LiDAR fusion
transformer (CLFT). CLFT maintains the generic encoder-
decoder architecture of a transformer-based network but uses
a novel progressive-assemble strategy of vision transformers
on a double-direction network. The results of the two network
directions are then integrated using a cross-fusion strategy over
the transformer decoder layers.

The CLFT aims to address the following issues that are
challenging and less explored in the autonomous driving
community.

(i) Unbalanced sample distribution. In real-traffic scenar-
ios, dealing with an unbalanced sample distribution poses a
significant challenge for autonomous vehicles. For instance,
while vehicle lanes consistently have more cars than humans
(primarily encountered at crossings or sidewalks), achieving
precise perception of human entities remains paramount for
the optimal functioning of any autonomous vehicle. Our pre-
vious camera-LiDAR FCN-based fusion model (CLFCN) [13]
achieved more than 90% accuracy in vehicle classification.
However, its accuracy in the human class is limited, reaching
only 50%. Due to the under-representation of the human class
in the dataset, CNNs face challenges in effectively learning
knowledge during explicit down-sampling processes. In con-
trast, vision transformers maintain a consistent resolution for
representations across all stages. Furthermore, their incorpo-
ration of a multi-head self-attention mechanism inherently
provides an advantage in handling global context, making
them more adept at addressing challenges associated with
imbalanced class distributions.

(ii) The consistency of multimodal input data formats.
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LiDAR sensors have attracted broad interest from autonomous
driving community and there are different strategies to process
the LiDAR’s point clouds data [14]. Unlike previous works
in this field that integrate a voxel view of the LiDAR with
the camera view [15] [16], our work uses the strategy to
project the LiDAR point clouds along XY , Y Z, and XZ
plane views; thus, the camera and LiDAR inputs are amal-
gamated into a unified data representation for subsequent
operations, encompassing feature extraction, assembly, and
fusion. Although our CLFT models require the pre-processing
of LiDAR point clouds such as calibration, filtering, and
projection, we have verified that it is possible to carry out
all these operations on the fly based on the current hardware
specifications on autonomous vehicles [17] without significant
overhead. Together with the inference time analysis in Section
V, it is possible to claim the practical potential applicability
of our models.

The niche of our work compared to other state-of-the-art
transformer-based multimodal fusion techniques is detailed in
Section II. The contribution of this work can be summarily
outlined as follows:

• We introduce a new network architecture named CLFT,
employing an innovative progressive-assemble strategy of
vision transformers within a double-direction network.

• To the best of our knowledge [18] [19], CLFT is the
first open-source transformer-based network that directly
uses camera and LiDAR sensory input for object semantic
segmentation tasks.

• We divide datasets based on illumination and weather
conditions. This approach allows us to compare and
highlight the robustness and efficacy of different models
in challenging real-world situations.

• We prove the advancement and prospect of multimodal
transformer-based models in the autonomous driving
perception field, especially the segmentation of under-
represented traffic objects.

The remainder of the paper is as follows. Section II reviews
the state-of-the-art literature on camera-LiDAR deep fusion
and transformer usage in autonomous driving. We analyze the
gap in current research and explain how our work contributes
to the field. Section III introduces the CLFT architecture de-
tails. Section IV presents the pre-processing and configurations
of the dataset we used in this work. Section V reports the
experiment results and discussion. Finally, a conclusion is
conducted in Section VI.

II. RELATED WORK

Given the scope of this work, we revisit relevant literature on
two aspects of semantic object segmentation for autonomous
driving. The first part reviews the popular camera-LiDAR
fusion-based deep learning proposals. The second part presents
the recent usage of transformers in autonomous driving re-
search.

A. Camera-LiDAR fusion-based deep learning

The fusion of camera and LiDAR data stands out as one
of the extensively investigated topics in multimodal fusion,

particularly in the context of traffic object detection and
segmentation. Various taxonomies are employed to categorize
deep fusion algorithms that integrate camera and LiDAR infor-
mation. To distinguish different fusion principles we adopt the
patterns suggested in [9], namely signal-level, feature-level,
result-level, and multi-level fusion. This systematic categoriza-
tion aids in better understanding and comparing the diverse
approaches employed in the fusion of camera and LiDAR data
for enhanced performance in traffic-related applications.

(i) The signal-level fusion is expressed as early-stage fu-
sion as it relies on spatial coordinate matching and raw
data (e.g. 2D/3D geometric coordinates, image pixel values)
integration to achieve the fusion of two sensing modalities.
Depth completion [20] [21] is an iconic application which
is instinctively suitable for signal-level fusion. Work [22]
[23], and [24] explored the possibility of using signal-level
fusion in road/lane detection scenarios and its performance-
computation trade-off. There are relatively few works that
implement signal-level fusion for traffic object detection and
segmentation [25] [26] because texture information loss is
inevitable in sparse mapping and projection process.

(ii) On the other hand, the literature of feature-level fusion
is rich. In general, the LiDAR data is involved in fusion as
either a voxel grid or 2D projection, and the feature map is
the most common format for image input. VoxelNet [27] is
the leading work to sample raw point clouds as sparse voxels
before the fusion with camera data. The examples of the fusion
of LiDAR’s 2D projections and camera images are [28] [29]
[30].

(iii) The intuition of result-level fusion is using the weight-
based logical operations to combine the prediction results from
different modalities, which is adopted in work [31] [32].

(iv) The multi-level fusion combines the other three fusion
approaches mentioned above to overcome the shortcomings
of the respective method. Van Gansbeke et al. [33] com-
bined signal-level and feature-level fusion in a network for
depth prediction. PointFusion [34] explored the result-level
and feature-level fusion combination by first generating 2D
bounding boxes, then filtering the LiDAR points based on
these 2D boxes, at last, using a ResNet [35] and PointNet [7]
network to integrate image and point clouds features to 3D
object predictions. Other multi-level fusion research includes
[36] [37].

During the literature review, we observe that the transition
from signal/result-level to multi-level fusion is the general
trend of camera-LiDAR deep fusion. To mitigate some limi-
tations such as computational complexity, early works usually
extract geometric information directly from LiDAR data to
leverage the existing ready-to-use image processing networks.
The recent research tends to carry out the fusion in a multi-
level format, that adopts various fusion strategies and context
encoding processes. Our work contributes in the line of a
multi-level fusion architecture which uses a transformer head
to encode the input and then execute the cross-fusion of
camera and LiDAR data.
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Fig. 1. The overall architecture of our double-direction network shows camera data flowing from the left side into the ViT encoder, while LiDAR data flows
from the right. The camera input is individual RGB channels, and the LiDAR input stands as XY, YZ, and XZ projection planes. The cross-fusion strategy
is shown in the center and highlighted using a dashed rectangle.

B. Transformers in autonomous driving research

The attention mechanism [11] has garnered significant at-
tention from researchers across diverse fields since its in-
troduction by Vaswani et al. in the transformer architecture
for natural language processing (NLP) tasks [10]. Among the
most notable transformer variants is the Vision Transformer
(ViT) [12], showcasing its capabilities in computer vision
with direct applications in autonomous driving. Specifically,
the autonomous driving perception tasks benefit the most
from the attention-mechanism’s strengths in global context and
long-range dependencies handling. In this section, we review
the state-of-the-art transformer-based works for 2D and 3D
general perception in autonomous driving.

The 2D perception applications of autonomous driving
extract the information from camera images. Lane detection
is the most prevalent task among 2D perception research.
Peng et al. [38] proposed a bird’s eye view transformer-based
architecture for road surface segmentation. Work [39] adopted
a lightweight transformer structure for lane shape prediction,
first modeled lane markings as regressive polynomials, then
optimized the polynomial parameters by a transformer query
and Hungarian fitting loss algorithms. Other transformer deep
networks for road/lane segmentation include [15] [40]. There
are relatively fewer works of 2D segmentation because the
multimodal fusion is the trend for semantic segmentation in
recent. Panoptic SegFormer [41] proposed a panoptic segmen-
tation framework utilizing a supervised mask decoder and a
query decoupling method to execute the semantic and instance
segmentation.

The research of transformer-based 3D object detection and
segmentation is abundant. DETR3D [42] is a variant of the
popular DETR [43] model but extended its 2D object detection
potential to 3D detection scenarios. DETR3D relied on multi-
view images to recover 3D information and used backward
geometric projection to combine 2D feature extraction and

3D prediction. FUTR3D [44] is a counterpart network to
DETR3D, featuring a modality-agnostic feature sampler de-
signed to accommodate multimodal sensory input for precise
3D bounding box predictions. PETR [45] embedded 3D coor-
dinate information into image to produce 3D position-aware
features. BEVFormer [46] employed spatial and temporal
attention layers for bird’s eye view features to improve the per-
formance of 3D object detection and map segmentation. Work
[47] and [48] focused on the 3D segmentation. TPVFormer
[47] reduced the computational requirement by transforming
the volume to three bird’s eye view planes. VoxFormer [48]
generated 3D voxels from 2D images, then performed cross
and self attention mechanisms to 3D voxel queries to compute
semantic segmentation results.

With reference to our review, there are relatively few
research works on the semantic object segmentation, let alone
the multimodal fusion of camera and LiDAR sensors. Work
[44] and [16] directly used LiDAR input, but their focus are
3D detection and occupancy prediction. Moreover, other latest
works [47] and [48] produced the voxel and pseudo-point-
clouds from the camera input, then carried out the semantic
occupancy prediction. While our CLFT models directly take
LiDAR data as input, and adopt another strategy to process
the LiDAR point clouds as image views in camera plane to
achieve 2D semantic object segmentation. Foremost, our work
plays a crucial role in bridging the gap in multimodal semantic
object segmentation within the realm of autonomous driving
research.

III. METHODOLOGY

There are two aims of our CLFT models in this work; first
is to outperform the existing state-of-the-art single modality
transformer-based models; second is to compete with the
recent CNN-based models in terms of traffic object segmen-
tation by fusing the camera and LiDAR data. We maintain
the overall structure of the transformer network for dense
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prediction (DPT) [49] but invoke a late fusion strategy in
its convolutional decoder, which first assemble the LiDAR
and camera data in parallel and then integrate their feature
map representations. We explore the capability of transformer-
based networks in semantic segmentation with the advantages
of LiDAR sensors, prove transformer networks’ potential to
classify the less represented samples in contrast with CNNs,
at last, provide a late fusion strategy for transformer-related
sensor fusion research.

The encoder-decoder structure has been widely imple-
mented in image analysis transformers. We closely follow the
protocol of ViT [12] to establish the encoders in our network
to create the multi-layer perceptron (MLP) heads for camera
and LiDAR data separately. For the decoders, we refer, but
leverage proposals in work [49] to assemble and integrate
the feature representations from camera and LiDAR sensors
to create the object segmentation that is more precise than
single modality. Figure 1 shows the overall architecture of our
network.

1) Encoder: ViT innovatively proposed an encoder to con-
vert an image into multiple tokens that can be treated in the
same way as words in a sentence; consequently, transferred
the standard transformer from NLP to computer vision ap-
plications. The ViT encoder uses two different procedures to
transfer the images into tokens. The first approach divides
an image into fixed-size non-overlapping patches, followed
by linear projection of their flattened vector representations.
The second approach extracts feature patches from a CNN
feature map and then feeds them into the transformer as
tokens. We retain the ViT’s conventions to define the encoder
variants in our work, namely, ‘CLFT-base’, ‘CLFT-large’,
‘CLFT-huge’, and ‘CLFT-hybrid’. The ‘base’, ‘large’, and
‘huge’ indicate the encoder’s configuration such as layer, size,
and amount of parameters. The ‘hybrid’ means other neural
network backbones are integrated in the model. The ‘CLFT-
base’, ‘CLFT-large’, and ‘CLFT-huge’ architectures use patch-
based embedding methods, have 12, 24, and 32 transformer
layers, and the feature dimension D of each token are 768,
1024, and 1280, respectively. The ‘CLFT-hybrid’ encoder
employs a ResNet50 network to extract pixel features as image
embeddings, followed by 12 transformer layers. The patch
size p of all our experiments is 16. The resolution of the
input camera and LiDAR image (h,w) is (384, 384), which
means the total amount of pixels for each patch h∗w

p2 = 576
is smaller than feature dimensions D of all variants; thus,
the knowledge can be retrieved from input in pixel-wise. For
the ‘CLFT-hybrid’ encoder, it extracts the features from the
input patch of 384÷ 16 = 24 resolution. All the encoders are
pretrained using ImageNet [50]. Following work in ViT, we
concatenate position embeddings with image embeddings to
retain positional information. Moreover, there is an individual
learnable token in sequence for classification purposes. This
classification token is represented as red block with the asterisk
in Figure 1. It is similar to BERT’s ‘class’ token [51], inde-
pendent from all image patches and positionally embedded.
Please refer to the original work [12] for the details of these
encoder architectures.

2) Decoder: The transformer networks designed for com-
puter vision usually modify the decoder by implementing
convolutional layers at different stages. Ranftl et al. [49]
proposed a transformer network for dense prediction (DPT)
that progressively assembles tokens from various encoder
layers into image-like representations to achieve final dense
prediction. Inspired by DPT’s decoder architecture, we con-
struct a decoder to process the LiDAR and camera tokens in
parallel.

As illustrated in Figure 1, we pick four transformer encoder
layers denoted as t (t = {2, 5, 8, 11} for ‘CLFT-base’ and
‘CLFT-hybrid’, t = {5, 11, 17, 23} for ‘CLFT-large’), then
assemble the tokens from each layer to an image-like repre-
sentation of feature maps. The feature map representations at
the initial layers of the network are up-sampled to a high res-
olution, whereas representations from deep layers ware down-
sampled to a low resolution. The resolutions are anchored to
input image size (h,w), and the sampling coefficients corre-
sponding to encoder layers t are s = {4, 8, 16, 32}. In detail,
there are two steps in the assembly process. As illustrated
in Algorithm 1, the first step replicates and concatenates the
patch-independent ‘classification token’ with all other tokens
individually, then forwards the concatenated representations to
an MLP process with GELU non-linear activation [52]. The
number of individual tokens is denoted as k.

Algorithm 1 The projection of the ‘classification token’.
Input: Input tensor T , representing either the camera or

LiDAR channels containing the ‘classification token’ and
patch tokens.

Output: Concatenated tensor representations XT

1: Tcls = replicate{T [:, 0]}
2: Tconcat = T [:, i] ∥ Tcls ∀ i = 1, . . . , k
3: XT = GELU(W · Tconcat + b)

Equation 1 shows the second step, which first concate-
nates the tokens from the first step based on their initial
positional order to yield an image-like representation, then
passes this representation to two convolution operations. The
first convolution projects the representation from dimension
D to D̂ (D̂ is set as 256 in our experiments). The second
convolution applies up-sampling and down-sampling toward
representation concerning the different layers of transformer
encoders. Xc and Xl are the concatenated camera and LiDAR
representations, N represents the total amount of patches. The
generic workflows of these two steps are shown in Figure 2.

XN×D
t ⇒ X

h
s ×

w
s ×D̂

t (1)

Xt = {Xc, Xl} s = {4, 8, 16, 32}

t = {2, 5, 8, 11} or {5, 11, 17, 23}

The last process of our decoder is the cross-fusion of
camera and LiDAR feature maps, which is progressively
illustrated in Figure 3. We refer to the feature fusion strategy
from RefineNet [53] that forwards the camera and LiDAR
representations through two residual convolution units (RCU)
in sequence. The camera and LiDAR’s representations are
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camera-LiDAR data coming from the ViT encoder. Each of this block has
residual units, de-convolution, and up-sampling.

summed with the results from the previous fusion operation
and then went through one additional RCU. We pass the
output of the last fusion layer to a deconvolutional and up-
sampling module to compute the final predicted segmentation.
The fusion of the information coming from the LiDAR and the
camera can happen in any of the fusion block as the connection
weights are automatically learned in the network through error
back-propagation. The idea of our multiple fusion blocks is to
integrate the concept of late-fusion (as each fusion blocks is
placed after each assemble block) and the concept of cross-
fusion [24] as the connection with each feature map can
happen in any of the fusion blocks with different weights.
The network automatically learns to weight the best block to
integrate tensor information coming from different sensors.

IV. DATASET CONFIGURATION

The primary purpose of this work is to compare the per-
formance of the vision transformer and CNN backbones for
semantic segmentation. Our previous work [13] successfully
modeled and evaluated a ResNet50-based FCN to carry out
camera-LiDAR fusion. In order to maintain an accordant
experiment environment, we construct the input data based
on Waymo dataset [54] to evaluate CLFT and other models.

Waymo dataset is recorded by multiple high-quality cameras
and LiDAR sensors. The scenes of Waymo dataset span
various illumination levels, weather conditions, and traffic sce-
narios. Therefore, as shown in Table I, we manually partitioned
the data sequences into four subsets: light-dry, light-wet, dark-
dry, and dark-wet. The ‘light’ and ‘dark’ indicate the relative

illumination conditions. The ‘dry’ and ‘wet’ represent the
weather difference in precipitation.

TABLE I
AMOUNT OF THE FRAMES IN FOUR BROAD SUBSETS FOR WAYMO OPEN

DATASET.

Light-Dry Dark-Dry Light-Wet Dark-Wet
14940 1640 4520 900

We provide intersection over union (IoU) as the primary
indication of model evaluation, with precision and recall values
as supplementary information. Please note that the IoU is
primarily used in object detection applications, in which the
output is the bounding box around the object. Therefore, We
modify the ordinary IoU algorithm to fit the multi-class pixel-
wise semantic object segmentation. The essential change is
related to the ambiguous pixels (pixels have no valid labels,
details in Section IV-B) that fall out of the class list. We assign
these pixels as void and exclude them from the evaluation.
The performance of networks is measured by the statistics of
the number of pixels that have identical classes indicated in
prediction and ground truth.

A. LiDAR Data Processing

The LiDAR readings reflect the object’s 3D geometric
information in the real world. Coordinate values in three
spatial channels contain features that can be exploited by
neural networks. As a result, regarding camera-LiDAR fusion,
it is common to extract and fuse multi-target features such as
images’ color textures and point clouds’ location information,
which is an approach namely as feature-level fusion [55].

We adopt feature-level fusion in this work. Thus, we project
3D LiDAR point clouds into the camera plane to create 2D
occupancy grids in XY , Y Z, and XZ planes. All the points in
LiDAR point clouds are transformed and projected following
Equation 2 and 3, respectively.[

xt, yt, zt
]T

=
(
r p y

) ([
xi, yi, zi

]T − [
xc, yc, zc

]T) (2)

r =

1 0 0
0 cos(ρ) sin(ρ)
0 −sin(ρ) cos(ρ)

 p =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 y =

 cos(ϕ) sin(ϕ) 0
−sin(ϕ) cos(ϕ) 0

0 0 1


In Equation 2, xt, yt, and zt are the 3D point coordinates

after transformation (in camera frame); r, p, and y represent
the Euler rotation matrices to the camera frame with (ρ, θ, ϕ)
representing the corresponding Euler angles. xi, yi, and zi
are the 3D point coordinates before transformation (in LiDAR
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Fig. 4. Examples of camera image, semantic annotation mask, and pre-processing of LiDAR data. (a) is the RGB image. (b) illustrates the object semantic
masks obtained from LiDAR ground truth bounding boxes. (c) (e) (g) are LiDAR projection images in X, Y, Z channels, respectively, while (d) (f) (h) are
corresponding up-sampled dense images. Please note that for visualization purposes, the grayscale intensity in (c)-(h) is proportionally scaled based on the
numerical 3D coordinate values of the LiDAR points.

frame); xc, yc, and zc denote the camera frame location
coordinates.

(
u, v, 1

)T
=

fx 0 w
2

0 fy
h
2

0 0 1

(
x, y, z

)T
(3)

In Equation 3, u and v are column and row positions of the
point in 2D image plane; fx and fy denote camera’s horizontal
and vertical focal length; w and h represent image resolution;
x, y, and z are transformed 3D point coordinates (same as xt,
yt, and zt in Equation 2).

Algorithm 2 LiDAR points filtering and image pixel values
population
Input: LiDAR point 3D coordinates L, projected LiDAR

point coordinates P , image resolution w and h.
Output: LiDAR projection footprints XY , Y Z, and ZX .

1: idx = argwhere(P < {w, h,+∞} & P >= {0, 0, 0})
2: XY [w × h]← 0
3: Y Z[w × h]← 0
4: XZ[w × h]← 0
5: XY [idx] = L[idx, 0]
6: Y Z[idx] = L[idx, 1]
7: XZ[idx] = L[idx, 2]

The operation after transforming and projecting the 3D point
clouds into 2D images is filtering, which aims to discard all the
points that fall out of the camera view. Waymo Open dataset is
collected using five LiDAR and five camera sensors covering
all vehicle directions. This work uses the top LiDAR’s point
clouds and the front camera’s image data. As shown in
Algorithm 2, three projection footprint images denoted as XY ,
Y Z, and ZX are generated. The pixels corresponding to 3D
points are assigned with x, y, and z coordinates, while the
rest are populated with zero. At last, we up-sample the LiDAR
images before feeding them to machine learning algorithms,
as it is a common practice in LiDAR-based object detection
research [56] [57]. Figure 4 (c)-(g) show the results of the
procedure described in this subsection.

B. Object Semantic Masks
Ground truth annotations in Waymo dataset are represented

by 2D and 3D bounding boxes, which correspond to camera
and LiDAR data separately. There are three classes in image
annotations: vehicles, pedestrians, and cyclists. Point clouds
annotations have an extra class which is traffic signs. There are
two obstacles when using Waymo’s ground truth annotations
in our networks.

Firstly, vision-transformer-based networks are well-known
for requiring vast samples [12]. However, the cyclists and
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TABLE II
PERFORMANCE COMPARISON OF CLFT-HYBRID VARIANT, CLFCN AND PANOPTIC SEGFORMER. BOLD INDICATES THE BEST VALUES IN EACH ROW PER

CLASS. (IN PERCENTAGE UNIT) (C, L, AND C+L INDICATE CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES, RESPECTIVELY)

CLFT-Hybird
(C+L)

CLFCN
(C)

CLFCN
(L)

CLFCN
(C+L)

Panoptic SegFormer
(C)

Panoptic SegFormer
(L)

Vehicle Human vehicle Human Vehicle Human Vehicle Human Vehicle Human Vehicle Human
Light-Dry 91.35 66.04 88.08 55.57 88.58 53.04 91.07 62.50 85.89 61.02 66.41 40.78
Light-Wet 91.72 66.03 88.54 52.13 89.47 50.06 92.77 64.66 83.58 49.70 63.07 29.87
Dark-Dry 90.62 65.66 81.16 42.87 86.16 48.83 89.41 60.33 81.45 44.67 70.25 38.69
Dark-Wet 90.18 53.51 74.49 43.14 87.51 46.68 89.90 56.70 70.50 14.68 54.40 39.00

traffic signs are relatively rare-represented in the Waymo
dataset. We notice our CLFT models struggle to learn and
predict these two classes in experimental setting as they are
less represented in the dataset. We assume that with additional
data also traffic signs and cyclists can be properly classified.
Therefore, we discard the traffic signs in this work and merge
the cyclists and pedestrians as a new class of so-called human.

Secondly, our research aims for semantic segmentation,
which requires annotations denoted as object contours. Since
Waymo dataset labeled the object in LiDAR sensor readings
as a 3D upright bounding box, we project all the points in
the bounding box into the image plane by the same procedure
described in Section IV-A. Figure 4 (b) shows an example of
semantic masks for vehicle and human classes. Please note that
a limitation of this approach is that some object pixels have no
valid labels because there are no corresponding LiDAR points.

V. RESULTS

As mentioned in Section I, our CLFT is the first transformer-
based model fusing the camera and LiDAR sensory data for
semantic segmentation. The experiments in this work focus
on the controlled benchmark comparisons in two aspects: i)
neural network architecture, ii) input modality.

The FCN is believed to be the recent generation of deep
learning methods with remarkable performance improvements
and has become the mainstream for semantic segmentation
[58]. Therefore, we choose the CLFCN [13], an FCN-based
network that fuses camera and LiDAR data for semantic
segmentation, as the reference to explore the advantages of
transformer backbone. Since the transformer is well-known
for its strengths in capturing global context and solving long-
range dependencies, we expect our transformer-based model
to outperform the FCN-based model in scenarios such as
unevenly distributed datasets and underrepresented samples.

Only a few existing deep learning methods process the
LiDAR input using the same principle as in this work: rep-
resenting the 3D point clouds as 2D grid-based feature maps
[14]. We compare the CLFT with the Panoptic SegFormer [41]
that is also transformer-backbone to evaluate the significance
of various input modalities. However, the Panoptic SegFormer
is purely vision-based. We follow the procedures in Section
IV to produce the point clouds projection images as Li-
DAR modality input for Panoptic SegFormer, but the camera-
LiDAR-fusion mode is not directly applicable to Panoptic
SegFormer. It is critical to maintain the same input data splits
and configurations in experiments for all models.

A. Experimental setup

The details of the input dataset configuration are described
in Section IV. The dataset splits for training, validation, and
testing are 60%, 20%, and 20% of the total number of frames,
respectively. The four data subsets, light-dry, light-wet, dark-
dry, and dark-wet, are shuffled and mixed for training and
validation but tested individually. We adopt the default hyper-
parameter configurations for CLFCN and Panoptic SegFormer
in training. Please refer to authors’ original work for details
[41]. We employ weighted cross-entropy loss function and
Adam optimization [59] for CLFT networks training. The
transformer encoder of CLFT is initiated from ImageNet
pre-trained weights. The transformer decoder and CLFCN’s
ResNet backbone are initiated randomly. The learning rate
decay of CLFT networks training follows li = l0(α

i), where
l0 is the initial learning rate, and α is 0.99. The batch size
of CLFT networks training is set as 32 by default, but set
as 24 for several experiments that exceed the memory limit,
for example, the fusion mode of CLFT-large variant. Other
hyperparameter settings can be found in the code we public.
The transformer-based networks are trained using an NVIDIA
A100 80GB GPU due to the large memory requirement of
transformer networks. Relatively low-memory-required FCN
training is executed on a desktop equipped NVIDIA RTX2070
Super GPU. The software environment of all experiments is
Python3.9 and CUDA11.2. Please refer to our GitHub link
for more details about the environment. Data normalization,
augmentation and early stopping are also used to generate the
models as in all most recent state-of-the-art methods.

B. Network performance and comparison

The main result of this work is reported in Table II and
Table III. Values are shown as the IoU for the two interest
classes, vehicle and human, in different modalities and weather
scenarios. The modalities are indicated as C, L, and C+L,
referring to the camera, LiDAR, and fusion, respectively.

As shown in Table II, the CLFT-hybrid variant outperforms
the CLFCN and Panoptic SegFormer in all scenarios, demon-
strating high segmentation capabilities over the same data.
Specifically, in dry environmental conditions, CLFT-hybrid
fusion modality archives 91% IoU for vehicles and 66% for
humans, while CLFCN fusion modality has 90% for vehicles
and 61% for humans. For single modality, Panoptic Seg-
Former achieves a similar performance of CLFCN for vehicle
class but outperforms for human class with less fine-tuned
works (61.02% against 55.57% in light-dry environment),
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TABLE III
PERFORMANCE COMPARISON OF ALL CLFT VARIANTS, CLFCN, AND PANOPTIC SEGFORMER. (IN PERCENTAGE UNIT)(C, L, AND C+L INDICATE

CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES, RESPECTIVELY)

VEHICLE HUMAN
Precision Recall IoU Precision Recall IoU

CLFT-Base (C+L) 93.63 95.95 90.12 71.97 79.47 60.68
CLFT-Large (C+L) 93.81 96.14 90.46 72.27 77.76 60.56
CLFT-Hybrid (C+L) 94.15 96.69 91.26 75.76 82.75 65.46
CLFCN (C+L) 93.17 97.67 91.19 65.63 92.89 62.51
Panoptic SegFormer (C) 94.82 88.43 84.40 81.11 63.78 55.55
Panoptic SegFormer (L) 89.57 70.85 65.48 67.84 46.85 38.29

which reinforces the transformer’s strength regarding under-
represented samples. The difference between our CLFT and
other models is even more evident in challenging conditions
such as dark and wet, where CLFT-hybrid performance drops
by 1-2 percentage points while CLFCN and Panoptic Seg-
Former in single modalities drop by 5-10 percentage points.
In these cases, fusion seems to play a pivotal role in CLFCN
while showing only slight improvements in CLFT-hybrid,
demonstrating the robustness of CLFT-hybrid in performing
data fusion in all types of conditions.

The Panoptic SegFormer has obvious weak performance in
LiDAR modality. This is because it is designed to process
RGB visual input. We carry out the LiDAR processing sepa-
rately to produce the camera-plane maps with 3D coordinate
information; then we feed the maps to Panoptic SegFormer.
The experiment results prove the necessity to integrate the
LiDAR processing into the neural networks’ architecture.
Though CLFT-hybrid outperforms the CLFCN in fusion in
most cases, it is essential to see that CLFCN models benefit
more from the fusion, as the improvement from individual
modalities seems to be higher, particularly in night conditions.
On the other hand, our CLFT models already show high
performance in challenging conditions with the fusion of
camera and LiDAR data.

Table III summarizes the performance of CLFT variants,
CLFCN, and Panoptic SegFormer. We present the precision,
recall, and IoU for all models. In order to have a straight-
forward comparison, we combine four weather scenarios for
performance evaluation. In all cases, the CLFT-hybrid variant
performs better than the base and huge variants. This result is
consistent with what Dosovitskiy et al. [12] reported in their
ablation experiments, in which ResNet-based transformer vari-
ants outperform the variants that use patch-based embedding
procedures. Though the CLFT-hybrid achieves the highest IoU
score, CLFCN and Panoptic SegFormer have higher recall and
precision results, respectively.

C. Ablation study

Table IV reports our results using camera (C), LiDAR (L),
and fusion (C+L). According to our ablation study in Table IV,
it is possible to conclude that fusion provides an improvement
over single-modality networks.

One might note that results for the individual modalities,
particularly LiDAR, show already performance over 90%
(before fusion); this result is also in line with many other
studies in the field, for instance, in [60] the authors reached

TABLE IV
ABLATION STUDY BASED ON CLFT-HYBRID VARIANT. (IN PERCENTAGE

UNIT)

(C, L, and C+L indicate camera-only, LiDAR-only, and fusion modalities,
respectively)

C L IoU Precision Recall
Vehicle Human Vehicle Human Vehicle Human

All weather
✓ 91.16 64.38 93.86 73.33 96.88 84.05

✓ 91.19 65.17 93.93 72.89 96.85 84.19
✓ ✓ 91.26 65.46 94.15 75.76 96.69 82.75

Light-Dry
✓ 91.23 64.87 93.83 72.63 97.05 85.86

✓ 91.32 64.92 93.96 72.68 97.02 85.88
✓ ✓ 91.35 66.04 94.14 75.31 96.86 84.29

Light-Wet
✓ 91.67 64.87 94.52 76.49 96.82 81.36

✓ 91.52 64.28 94.40 74.43 96.78 82.49
✓ ✓ 91.72 66.03 94.69 78.27 96.96 80.84

Dark-Dry
✓ 90.51 65.62 93.15 74.30 96.96 84.66

✓ 90.47 65.18 93.27 74.30 96.96 84.16
✓ ✓ 90.62 65.66 93.38 77.39 96.68 81.25

Dark-Wet
✓ 89.62 52.46 93.60 70.00 95.70 67.69

✓ 89.74 49.95 93.69 67.28 95.51 65.97
✓ ✓ 90.18 53.51 94.40 68.68 95.29 70.79

over 90% IoU in the car class on the SemanticKitti dataset
[61].

Inspecting the analysis on all-weather, one can see that
CLFT-hybrid provides a small improvement (less than one
percentage point in both classes). However, as by construction,
the dataset split is strongly unbalanced (see Table I) toward
light-dry scenario (roughly 68% of the total). The amount of
light scenarios covers over 88% of the total number of frames.
Clearly, the class that is better represented in the dataset affects
the overall result the most.

To better appreciate the improvement in our studies, Table
IV is also divided according to the data split in Table I. Under
these conditions, it is possible to assert that fusion has a higher
impact in dark scenarios, covering roughly 12% of the total
number of frames in our dataset.

The unbalance of the dataset has an impact on both envi-
ronment conditions and object classes, thus the vehicle class
(with already over 90% accuracy) is less affected, while the
human class shows better improvements, reaching around 2-
4% in rainy conditions.
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D. Inference time analysis

Table V presents an additional study on the inference time.
In the experiments, we make the statistic of CUDA event time
on NVIDIA A100 GPU for fusion modality of all models.
All the models are set in evaluation mode for inference time
calculation. We use the image in Figure 4 as input, first warm
up the GPU with 2000 iterations, then calculate the mean time
of the event stream for another 2000 iterations. The CPU and
GPU are synchronized when recording timestamps. In gen-
eral, FCN-based models have obvious advantages against the
transformer-based models in terms of computational efficiency.
The Panoptic SegFormer has the highest inference time among
all models in experiments. It appears that the CLFCN is faster
than our best-performing model, the CLFT-hybrid. However,
this difference is only about 10ms per frame, which can be
considered reasonable in a trade-off between performance and
speed. For autonomous driving, where safety comes first, clas-
sification performance should always be considered a crucial
parameter in the network design.

TABLE V
INFERENCE TIME COMPARISON OF ALL CLFT VARIANTS, CLFCN AND

PANOPTIC SEGFORMER (IN MILLISECONDS UNIT)(C, L, AND C+L
INDICATE CAMERA-ONLY, LIDAR-ONLY, AND FUSION MODALITIES,

RESPECTIVELY)

NETWORK MODALITY TIME
CLFT-base

C+L

16.23
CLFT-Large 36.75
CLFT-Hybrid 25.69
CLFCN 15.94

Panoptic SegFormer C 93.52
L 93.45

E. Qualitative results

Figure 5 presents examples of segmented images from
the Waymo dataset to appreciate the results of this work
from a qualitative point of view. Following the above men-
tioned contribution of this work, the qualitative evaluation is
also divided by network structure, weather and illumination
conditions. The three CLFT variants, ‘Base’, ‘Large’, and
‘Hybrid’, are compared with the Panoptic SegFormer and
CLFCN modalities. The segmentation results from models are
overlaid to the camera images for comparison. The first row is
the ground truth segmentation provided by the dataset. Please
note that the annotations of the Waymo dataset are based on
the LiDAR point clouds data, which is a common labeling
strategy adopted by many famous multi-modal datasets for
autonomous driving, including SemanticKitti and nuScenes
[62] datasets. The LiDAR-points-based labeling strategy re-
sults the 2D semantic masks contain the pixels without valid
label. Waymo dataset claimed to have the highest per-frame
point clouds density among the SemanticKitti, nuScenes, and
Argoverse [63] datasets, which is the reason why the Waymo
dataset better fits for the evaluation of CLFT networks for 2D
semantic segmentation tasks.

The qualitative results generally follow the same consis-
tency as in numerical benchmarks. The CLFT-Hybrid variant
discloses the most contextual details and its segmentation

results are more identical to ground truth than other networks,
especially in challenging and under-represented environments.
For example, the vehicles in night-dry (the third column) sce-
nario, the CLFCN networks detect less details even with fine-
tuning efforts, proves that the transformer is more effective
than FCN in specific situations. Moreover, the single-modality
segmentation results from Panoptic SegFormer and CLFCN
networks show the necessities and advancements of multi-
modal sensor fusion in autonomous driving.

VI. CONCLUSION

In this paper, we propose a transformer-based multimodal
fusion method for semantic segmentation. Based on all the
above cases, it is possible to say our CLFT model is one
of the cutting-edge neural networks for 2D traffic object
semantic segmentation. Specifically, the CLFT models benefit
from the multimodal sensor fusion and transformer’s multi-
attention mechanism, make a significant improvement for
under-represented samples (maximum 10 percent IoU increase
for human class). However, it is worth mentioning that trans-
former networks intuitively require a large amount of data for
training. In our experiments, light-wet and dark-wet subsets
only take into account 12% of the total input data, which
explains that the CLFCN model outperforms the CLFT-hybrid
model in some cases in Table II.

This work proposes the adoption of a vision transformer’s
strategy to divide the input image into non-overlapping patches
or extract feature patches from CNN feature maps. Intuitively,
we project and up-sample LiDAR data to dense point clouds
images, then design a double-direction network to assemble
and cross-fuse the camera and LiDAR representations to
achieve final segmentation. We maintain the same input dataset
splits and configurations in all our experiments and success-
fully demonstrate the transformer’s merit against the FCN
regarding object segmentation tasks. Specifically, we classify
the input data into sub-categories of different illumination and
weather conditions dedicated to comprehensively evaluating
the models. Similar to prior transformer works, we prove its
potential on uneven-distributed datasets and under-represented
samples. At last, we want to highlight that the initiation of
CLFT lies on the progress to extend our framework that
aims to cover all aspects of low-speed autonomous shuttles,
including hardware configuration, dataset collection and post-
processing for perception [17], validation [64], and path plan-
ning [65]. We develop the CLFT to be compatible with other
systems in terms of environment, data formats, and operating
platforms, which grants our work the advantages in scalability
and practical application on real autonomous shuttles.
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Fig. 5. Qualitative comparison of segmentation results between different models.
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Cross-modal unsupervised domain adaptation for 3d semantic segmen-
tation,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 12 605–12 614.

[32] S. Gu, T. Lu, Y. Zhang, J. M. Alvarez, J. Yang, and H. Kong, “3-d
lidar+ monocular camera: An inverse-depth-induced fusion framework
for urban road detection,” IEEE Transactions on Intelligent Vehicles,
vol. 3, no. 3, pp. 351–360, 2018.

[33] W. Van Gansbeke, D. Neven, B. De Brabandere, and L. Van Gool,
“Sparse and noisy lidar completion with rgb guidance and uncertainty,”
in 2019 16th International Conference on Machine Vision Applications
(MVA), 2019, pp. 1–6.

[34] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion for
3d bounding box estimation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 244–253.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] K. El Madawi, H. Rashed, A. El Sallab, O. Nasr, H. Kamel, and
S. Yogamani, “Rgb and lidar fusion based 3d semantic segmentation for
autonomous driving,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2019, pp. 7–12.

[37] X. Zhao, Z. Liu, R. Hu, and K. Huang, “3d object detection using scale
invariant and feature reweighting networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 9267–
9274.

[38] L. Peng, Z. Chen, Z. Fu, P. Liang, and E. Cheng, “Bevsegformer:
Bird’s eye view semantic segmentation from arbitrary camera rigs,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 5935–5943.

[39] R. Liu, Z. Yuan, T. Liu, and Z. Xiong, “End-to-end lane shape prediction
with transformers,” in Proceedings of the IEEE/CVF winter conference
on applications of computer vision, 2021, pp. 3694–3702.

[40] Y. Bai, Z. Chen, Z. Fu, L. Peng, P. Liang, and E. Cheng, “Curveformer:
3d lane detection by curve propagation with curve queries and attention,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 7062–7068.

[41] Z. Li, W. Wang, E. Xie, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo,
and T. Lu, “Panoptic segformer: Delving deeper into panoptic segmen-
tation with transformers,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 1280–1289.

[42] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon,
“Detr3d: 3d object detection from multi-view images via 3d-to-2d
queries,” in Conference on Robot Learning. PMLR, 2022, pp. 180–191.

[43] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[44] X. Chen, T. Zhang, Y. Wang, Y. Wang, and H. Zhao, “Futr3d: A
unified sensor fusion framework for 3d detection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 172–181.

[45] Y. Liu, T. Wang, X. Zhang, and J. Sun, “Petr: Position embedding trans-
formation for multi-view 3d object detection,” in European Conference
on Computer Vision. Springer, 2022, pp. 531–548.

[46] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
“Bevformer: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in European conference on
computer vision. Springer, 2022, pp. 1–18.

[47] Y. Huang, W. Zheng, Y. Zhang, J. Zhou, and J. Lu, “Tri-perspective view
for vision-based 3d semantic occupancy prediction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 9223–9232.

[48] Y. Li, Z. Yu, C. Choy, C. Xiao, J. M. Alvarez, S. Fidler, C. Feng,
and A. Anandkumar, “Voxformer: Sparse voxel transformer for camera-
based 3d semantic scene completion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
9087–9098.

[49] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 12 179–12 188.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[52] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[53] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1925–1934.

[54] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[55] K. Banerjee, D. Notz, J. Windelen, S. Gavarraju, and M. He, “Online
camera lidar fusion and object detection on hybrid data for autonomous
driving,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp.
1632–1638.

[56] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedestrian detection
combining rgb and dense lidar data,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 4112–
4117.

[57] J. Schlosser, C. K. Chow, and Z. Kira, “Fusing lidar and images for
pedestrian detection using convolutional neural networks,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 2198–2205.

[58] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, “Review the state-of-
the-art technologies of semantic segmentation based on deep learning,”
Neurocomputing, vol. 493, pp. 626–646, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222000054

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:6628106

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3454971

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on September 06,2024 at 11:41:12 UTC from IEEE Xplore.  Restrictions apply. 

https://www.sciencedirect.com/science/article/pii/S0952197623008539
https://www.sciencedirect.com/science/article/pii/S0952197623008539
https://www.sciencedirect.com/science/article/pii/S0925231222000054
https://api.semanticscholar.org/CorpusID:6628106


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, AUGUST 2024 12

[60] X. Zhu, H. Zhou, T. Wang, F. Hong, W. Li, Y. Ma, H. Li, R. Yang, and
D. Lin, “Cylindrical and asymmetrical 3d convolution networks for lidar-
based perception,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 10, pp. 6807–6822, 2021.

[61] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, “SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences,” in Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV), 2019.

[62] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[63] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 8748–
8757.

[64] M. Malayjerdi, Q. A. Goss, M. İ. Akbaş, R. Sell, and M. Bellone, “A
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